Mathematics 20-3 Final Exam Formula Sheet

Unit 1-Slope \& Rate of Change

Slope Calculations/Formula's:

$$
\begin{gathered}
\text { slope }=\frac{\text { rise }}{\text { run }} \quad \text { slope }=\tan (\theta) \\
\text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{gathered}
$$

When you are given two coordinates of a line in the form (x, y)

Percentage Grade/Angle of Elevation Formula's:

$$
\% \text { Grade }=\text { slope } \times 100
$$

$$
\% \text { Grade }=\tan (\theta) \times 100
$$

$$
\text { Angle of Elevation }=\tan ^{-1}\left(\frac{\text { rise }}{\text { run }}\right)
$$

Length of a Line Formula:

$$
\text { Length }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

When you are given two coordinates of a line in the form (x, y)

Unit 2 - Graphical Representations

$$
\begin{gathered}
\%=\frac{\text { score }}{\text { total }} \times 100 \\
\text { angle }=\frac{\%}{100} \times 360 \\
\text { Number of items }=\frac{\%}{100} \times \text { total }
\end{gathered}
$$

Unit 3 - Surface Area / Volume / Capacity

2-D Shapes (Units are squared)

3-D Shapes (Units are cubed)

$$
m m^{3}\left|\mathrm{~cm}^{3}\right| \mathrm{m}^{3} \mid \mathrm{km}^{3}
$$

Shape	Surface Area Formula	Volume Formula
Rectangular Prism	Sum of all the areas of the faces	$\mathrm{V}=$ length \times width \times height
Square/Rectangular Pyramid	Sum of all the areas of the faces	$\mathrm{V}=\frac{\text { length } \times \text { width } \times \text { height }}{3}$
Right Circular Cylinder	$S A=2 \pi r^{2}+2 \pi r h$	$V=\pi r^{2} h$
Right Circular Cone	$S A=\pi r^{2}+\pi r s$	$V=\frac{\pi r^{2} h}{3}$
Sphere	$S A=4 \pi r^{2}$	$V=\frac{4 \pi r^{3}}{3}$

Unit 4-Trigonometry

Finding Sides

$$
\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}
$$

- Remember to use cross multiplying with your trig ratios after you have filled in all of your numbers

Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2} \text { remember that } \mathrm{c} \text { is the hypotenuse }
$$

Finding Angles

$\theta=\sin ^{-1}\left(\frac{\text { opposite }}{\text { hypotenuse }}\right) \quad \theta=\cos ^{-1}\left(\frac{\text { adjacent }}{\text { hypotenuse }}\right) \quad \theta=\tan ^{-1}\left(\frac{\text { opposite }}{\text { adjacent }}\right)$

Unit 5 - Scale Representations

Finding A Scale Factor

$$
\text { Scale Factor }=\frac{\text { measurement }(\text { diagram })}{\text { measurement(original) })}
$$

Note: Always remember to reduce the fraction

Enlargement / Reduction

Enlargement: The bigger number is first in the scale factor (4:1 or $\frac{4}{1}$)
Reduction: The smaller number is first in the scale factor (1:4 or $\frac{1}{4}$)

Elevations (Views)

Elevations are 2D drawings of common views of 3D shapes. The elevations most commonly drawn are front, top, side.

Unit 6 - Personal Finance

Simple Interest

$$
I=\operatorname{Pr} t
$$

- I = Interest (\$)
- $P=$ Principle (Starting amount \$)
- $R=$ Interest Rate (As a decimal)
- T = Time (In years)

Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

- A = Final Amount (Interest \& Principle Combined \$)
- $\mathbf{P}=$ Principle (Starting amount \$)
- $R=$ Interest Rate (As a decimal)
- $\mathbf{N}=$ Number of compounding periods per year
- $\mathbf{T}=$ Time (In years)

